香港天文台 HONG KONG OBSERVATORY

Impact of Climate Change in Hong Kong

FC Sham Chief Experimental Officer

Evidence of a warming world

Change in surface temperature 1901-2016

Atmospheric CO₂ concentration

Unprecedented in at least the last 800,000 years. The annual increase from 2015 to 2016 was 3.3 ppm, marking the largest increase on instrumental record.

Global warming is unequivocal

2015, 2016 and 2017 were the three warmest years on record. Global mean temperature in 2017 was about 1.1 °C above pre-industrial levels.

Record-breaking extreme weather

Extreme weather in early summer 2018

Japan suffered the worst flooding and landslide in decades. More than 200 people lost their lives.

Daily temperature record of 41.1°C at Kumagaya (near Tokyo) on 23 July

Recent abrupt warming has reversed the long-term cooling trend of past 5,000 years

Decrease in summer Arctic sea ice in the past 3 decades is unprecedented in the last 1450 years

Arctic warming twice as fast as global average

ARCTIC HAD SECOND WARMEST YEAR ON RECORD

Retreat of the Columbia Glacier, Alaska

Accelerated glacier retreat

Largest Greenland glaciers calving ever filmed

Melting of glacier unstoppable in the Amundsen Sea sector

May cause significant global sea level rise of around 1.2 metres if glaciers in West Antarctic melt away

Ocean warming accounts for about 93% of total heating rate

 Only a tiny portion (1%) of energy trapped by GHG goes to heating up the atmosphere

Global ocean heat content

Sea level rising

2016: highest global mean sea level in the satellite record

Rate: 3.2 mm/year (1993-present)

Source: climate.nasa.gov

Threat of storm surge increases with rising sea level

Storm surge during the passage of Hurricane Sandy

2013 Super Typhoon Haiyan

Southern Philippines Typhoon Haiyan (Yolanda), 2013

Over 6300 deaths

Enhanced hydrological cycle

Source: Climate Commission, Australia

18

South Louisiana (US) flooding 2016

How has global warming affected HEAVY RAIN EVENTS like the one along the Gulf in mid-August?

NOAA Climate.gov, based on Van der Wiel et al., 2016

Myth 1 – No consensus of scientists?

Scientific consensus

United Nations and Climate Change

IPCC: 政府間氣候變化 專門委員會

IPCC – alarmist or conservative?

Not sure whether it is natural or not

Climate Change 2001

Contribution of Working Group II to the Third Assessment
 Report of the Intergovernmental Panel on Climate Change

very unlikely to be natural variation alone

Human influence on the climate is clear.

Almost ¼ of a century!

Studies into scientific agreement on human-caused global warming

Source: http://www.skepticalscience.com

COP21

Paris Agreement put in force on 4 November 2016

Where is the world heading to after COP21?

Given the COP21 pledges, a rise of **3** °C (above preindustrial levels) by end of century is likely.

Much more mitigation effort is required to keep temperature rise below 2 °C by end of this century

Global average temperature change

For RCP8.5, temperature rise could reach 4 °C by 2100
 Temperature rise below 2 °C is only possible for RCP2.6

More heat waves

More land areas experience an increase in heavy precipitation

Longer and more intense droughts in some regions

Sea level rises faster than expected

Rising sea level will accentuate the threat of storm surges

Impact on Hong Kong

Myth 2 - One degree in one hundred years!

May 2018

2018年5月香港天文台錄得的日平均氣溫

Daily Mean Temperature recorded at the Hong Kong Observatory for May 2018

Total 16 very hot days
6 hot nights
Breaking the records for May

Increase in very hot days & hot nights Decrease in cold days

More frequent extreme rainfall

Hourly rainfall records at HKO

Typhoons with extreme sea level in Hong Kong

Measured at Victoria Harbour

Rank *	Year/Month	Name of tropical cyclone	Maximum sea level above Chart Datum (m)	Maximum storm surge (m)
1	Sep 1937**		4.05	1.98
2	Sep 1962	Wanda	3.96	1.77
3	Aug 1936**		3.81	1.92
4	Aug 2017	Hato	3.57	1.18
5	Sep 2008	Hagupit	3.53	1.43

Measured at Tai Po Kau

Rank *	Year/Month	Name of tropical cyclone	Maximum sea level above Chart Datum (m)	Maximum storm surge (m)
1	Sep 1937**		6.25	3.81
2	Sep 1962	Wanda	5.03	3.20
3	Aug 1979	Норе	4.33	3.20
4	Aug 2017	Hato	4.09	1.66
5	Sep 2008	Hagupit	3.77	1.77

* Ranking based on the maximum sea level

** By observing tide poles (before 1951)

More very hot days, more hot nights, fewer cold days

If emission reductions in the Paris Agreement fail to materialize, the world may follow the high greenhouse gas concentration scenario.

Number of extremely warm-and-humid days will increase

Duration of high heat stress is also projected to increase.

More extremely wet years

Significant increase in number of extremely wet years under the high concentration scenario

More extreme rainfall

Annual max. 3-day rainfall could reach 500 mm under the high concentration scenario

	1986-2005 Actual	2051-2060 Projection	2091-2100 Projection	2051-2060 Projection	2091-2100 Projection	
Greenhouse gas concentration scenario		Medium-low	Medium-low	High	High	A
Annual number of extreme rainfall days	4.2	4.5	4.4	5.0	5.1	Avera rainfa
Average rainfall intensity (mm/day)	23.4	25.0	24.0	25.4	26.7	will in
Annual maximum number of consecutive dry days	46	49	52	54	59	Num
Annual number of rain days	102	103	102	100	97	days

Average ainfall intensity will increase

Number of rain days will decrease

Sea level will rise in all scenarios

Sea level rise increases the threat of storm surge

2017 Super Typhoon Hato

Measured at Victoria Harbour Maximum sea level above Chart Datum 3.57 m

What to expect for the worst track scenario of Hato

- Perturbing the track of Hato, the tide level at Quarry Bay could reach a maximum of over 4.5 m in the worst case scenario (Lau & Chan, 2017)
- Under climate change, mean sea level in HK is projected to increase by ~ 1 m by the end of this century (high GHG concentration scenario) -> Hato at the end of century could also bring tide heights of over 4.5 m!

天文台熱帶氣旋災害短片

熱帶氣旋四大害

Risks for buildings and infrastructure

Extreme events	Risks
Precipitation extremes	 Landslides Flooding (both inside and outside of the building!)
Increase in extremely hot days	 Increase in cooling demand
Mean sea level rise and storm surge	 Coastal flooding Flooding in basements Power outage
Increased intensity of tropical cyclones	 Damage to glass curtain walls

Combating Climate Change

- Mitigation public education and outreach activities
- Adaptation climate projection and information services for stakeholders
- Resilience forecast and warning of extreme weather; promote public awareness of disaster prevention

香港 溫室氣體 排放源 Local **Sources** of HK's Carbon **Emissions**

Low Carbon Living

適應氣候變化 **Climate Chan** BATTERED CITY C KILLER HATO POU **EJJClimate** Resilienc

強化城市結構及斜坡安全 提升排水及洪水管理計劃 深入應對海平面上升挑戰

南華早報

e tried to stop

waves from ning in with wooden boards, but it was no use

Ada

ident battles to keep the tide at bay as Typhoon Hato roars the

強化

GEST

torso idontia

trengthen the urban fabric and slope safety Upgrade drainage and flood management Tackle the challenge of sea level rise

Adapting to climate change

Resilience

PATH TO STRENGTHEN RESILIENCE

Lesson sharing in Tai O

Installing flood barrier to cope with storm surges

香港 氣候 行動

Thank you