香港混凝土大廈破損原因及維修指引

CAUSES OF DETERIORATION AND REPAIR GUIDELINES OF REINFORCED CONCRETE BUILDINGS IN HONG KONG

Presented by:

- CHAN Kin
- WANG Hang-kuk, Ivy

Buildings Department Sunday, 12 August 2018

CONTENTS

- Introduction of reinforced concrete properties, cause of deteriorations, investigation and repairs
- Inspection tools and investigation equipment available in Buildings Department
- Applications of the tools and equipment, and example of works
 - Schmidt Hammer
 - Cover meter survey
 - Alkalinity pH test
 - Thermal Scanning
 - Laser Distance Meter

• Q&A

REINFORCED CONCRETE PROPERTIES, CAUSE OF DETERIORATIONS & INVESTIGATION

Passivation of reinforcement in good quality concrete

• Steel Protection

Hydration

- Release alkalis (Sodium, potassium and calcium hydroxides)
- pH Value 12.5-13.6
- Passive condition: Corrosion process stops

• Loss of passivity: two factors

- Reduction of alkalinity
- Presence of free chloride which destroys passivity

Embedded Metal Corrosion Process

• Carbonation or Chloride + O_2 + H_2O

= Corrosion activated - Rust

- Expansion
- Cracking

• Electrolyte (Salt solution in hydrated cement)

CARBONATION

$\circ \qquad CO_2 + H_2O \rightarrow H_2CO_3$

• $H_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2H_2O$

Progression of carbonation front through concrete

Depth of carbonation = constant x time $\frac{1}{2}$

Carbonation time (years) for various depths of cover and W/C ratios.

Oridinary Portland Cement (no additives), aggregate type, sand and gravel							
W/C Ratio	Cover mm						
	5	10	15	20	25	30	
0.45	19	75	100 +	100 +	100 +	100 +	
0.50	6	25	56	99	100 +	100 +	
0.55	3	12	27	49	76	100 +	
0.60	1.8	. 7	16	29	45	65	
0.65	1.5	6	13	23	36	52	
0.70	1.2	5	11	19	30	43	
	L					l	

 $\mathbf{14}$

Schematic diagram of chloride induced corrosion of steel

Type or use of concrete	Maximum total chloride content expressed as a percentage of chloride ion by mass of cement ⁽¹⁾		
Prestressed concrete. Steam–cured structural concrete	0.1		
Concrete made with Sulphate Resisting Portland cement	0.2		
Concrete with reinforcement or other embedded metal	0.35		
Note:			
1. Inclusive of pfa or ggbs			

Table 4.5 - Limits of Chloride content of concrete

Concrete attack by sea water

Concrete attack by sea water

REPAIR SEQUENCE

- Access (very costly)
- Protection/ precautionary measure
- Survey
- Test (NDT)
- Mark out
- Hacking off
- Bar cleaning
- Substrate preparation
- Steel priming
- Bond coat
- Patching
- Curing

Cement & sand prebagged for site mixed mortar

Concrete plinth before repair

Concrete plinth after repair

1200mm thick diaphragm wall condition after removal of the spalled concrete

Steel bar condition after removal of the spalled concrete

Reinforcing Steel Cleaning

Adapted from IACRS-Surface Preparation Guideline 3731, October 15, 1989.

1

 $\mathbf{28}$

GRIT BLASTING (SAND BLASTING)

Grit blasting in progress

Steel bar primed after grit blasting

Recasting material, Renderoc LA after mixing

Deleterious/ muddy material within diaphragm wall

Formwork for recasting

Wall after repair

GRIT BLASTING (WET BLASTING)

Wet Grit Blasting Trial

Wet Grit Blasting Trial

Wet Grit Blasting Trial

BLAST N'VAC

The Leader in Abrasive Vacuum Blasting

"A DUST FREE/FULLY ENCLOSED/DRY BLAST CLEANING REVOLUTION"

Fig 13. External load jacking technique

INSPECTION TOOLS AND INVESTIGATION EQUIPMENT AVAILABLE IN BUILDINGS DEPARTMENT

APPLICATIONS OF THE TOOLS AND EQUIPMENT, AND EXAMPLE OF WORKS

50

Schmidt Hammer

SCHMIDT HAMMER

 $\mathbf{51}$

INTRODUCTION

• The rebound hammer test is one of the nondestructive tests used to check the compressive strength of concrete

REBOUND HAMMER CHART

REBOUND HAMMER TEST

 $\mathbf{54}$

APPLICATIONS OF THE TOOLS AND EQUIPMENT, AND EXAMPLE OF WORKS

Cover meter survey

 $\mathbf{55}$

COVER METER SURVEY

Proceq Profoscope+ Rebar Detector

INTRODUCTION PROCEQ PROFOSCOPE+ REBAR DETECTOR

• Fast and accurate rebar detection, cover and diameter size measurement

HOW TO DISTINGUISH BETWEEN A REBAR AND A "MIDPOINT"?

THE MEASUREMENT PRINCIPLE

• The Profoscope used <u>electromagnetic</u> <u>pulse induction</u> technology to detect rebars.

APPLICATION

APPLICATIONS OF THE TOOLS AND EQUIPMENT, AND EXAMPLE OF WORKS

Alkalinity PH test

INTRODUCTION

- This simple test allows the measurement of depth of carbonation through the surface of concrete. During the test, the broken or cored surface is sprayed with phenolphthalein solution to detect the loss of alkalinity associated with carbonation.
 - 1 plastic wash bottle
 - 1 liter of phenolphthalein solution

APPLICATIONS OF THE TOOLS AND EQUIPMENT, AND EXAMPLE OF WORKS

66

Infrared Thermal Imager

BUILDING THERMOGRAPHY

11/F

Heat source (high temp.) suggested the air conditioning unit was switched on.

Premises concerned:

Date and time: 11 Oct 2017 8:00pm

Carried out and attended by

APPLICATIONS OF THE TOOLS AND EQUIPMENT, AND EXAMPLE OF WORKS

Laser Distance Meter

PRACTICAL APPLICATION:

PRACTICAL APPLICATION: ROOF TOP STRUCTURE

